Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e10911, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665032

RESUMO

Host-microbe interactions play crucial roles in marine ecosystems. However, we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help to describe and understand these complex systems. It posits that a host and its associated microbiota with which it interacts, form a holobiont, and have to be studied together as a coherent biological and functional unit to understand its biology, ecology, and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences. Given the connectivity and the unexplored biodiversity specific to marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances, e.g., the development of controlled experimental model systems for holobionts from all major lineages and the modeling of (info)chemical-mediated interactions between organisms. Here we propose that one significant challenge is to bridge cross-disciplinary research on tractable model systems in order to address key ecological and evolutionary questions. This first step is crucial to decipher the main drivers of the dynamics and evolution of holobionts and to account for the holobiont concept in applied areas, such as the conservation, management, and exploitation of marine ecosystems and resources, where practical solutions to predict and mitigate the impact of human activities are more important than ever.

2.
HardwareX ; 10: e00224, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35607681

RESUMO

Molecular oxygen excited to singlet state (Singlet oxygen, 1O2) becomes highly reactive and cytotoxic chemical. 1O2 is commonly generated by photoexcitation of dyes (photosensitizers), including the photodynamic therapy and diagnostics of cancer. However, the formation of singlet oxygen is often unwanted for various light-sensitive compounds, e.g. it causes the photobleaching of fluorescent probes. In either case, during a development of new photosensitive chemicals and drugs there is a need to evaluate the amount of 1O2 formed during photoexcitation. The direct approach in measuring the amount of singlet oxygen is based on the detection of its luminescence at 1270 nm. However, this luminescence is usually weak, which implies the use of highly sensitive single-photon detectors. Thus the existing instruments are commonly complicated and expensive. Here we suggest an approach and report a device to measure the 1O2 luminescence using low-cost InGaAs avalanche photodiode and simple electronics. The measurements can be performed in stationary (not time-resolved) mode in organic solvents such as tetrachloromethane (CCl4), ethanol and DMSO. In particular, we performed spectral-resolved measurements of the singlet oxygen luminescence in CCl4 with the device and demonstrated high complementarity to literature data. The simple setup allows to evaluate the efficiency (or speed) of singlet oxygen generation and hence facilitates the development and characterization of new photosensitizers and other photosensitive chemicals.

3.
ISME Commun ; 1(1): 5, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-37938231

RESUMO

Marine Group II Euryarchaeota (Candidatus Poseidoniales), abundant but yet-uncultivated members of marine microbial communities, are thought to be (photo)heterotrophs that metabolize dissolved organic matter (DOM), such as lipids and peptides. However, little is known about their transcriptional activity. We mapped reads from a metatranscriptomic time series collected at Sapelo Island (GA, USA) to metagenome-assembled genomes to determine the diversity of transcriptionally active Ca. Poseidoniales. Summer metatranscriptomes had the highest abundance of Ca. Poseidoniales transcripts, mostly from the O1 and O3 genera within Ca. Thalassarchaeaceae (MGIIb). In contrast, transcripts from fall and winter samples were predominantly from Ca. Poseidoniaceae (MGIIa). Genes encoding proteorhodopsin, membrane-bound pyrophosphatase, peptidase/proteases, and part of the ß-oxidation pathway were highly transcribed across abundant genera. Highly transcribed genes specific to Ca. Thalassarchaeaceae included xanthine/uracil permease and receptors for amino acid transporters. Enrichment of Ca. Thalassarchaeaceae transcript reads related to protein/peptide, nucleic acid, and amino acid transport and metabolism, as well as transcript depletion during dark incubations, provided further evidence of heterotrophic metabolism. Quantitative PCR analysis of South Atlantic Bight samples indicated consistently abundant Ca. Poseidoniales in nearshore and inshore waters. Together, our data suggest that Ca. Thalassarchaeaceae are important photoheterotrophs potentially linking DOM and nitrogen cycling in coastal waters.

4.
Genome Res ; 30(4): 647-659, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32205368

RESUMO

Large-scale metagenomic and metatranscriptomic data analyses are often restricted by their gene-centric approach, limiting the ability to understand organismal and community biology. De novo assembly of large and mosaic eukaryotic genomes from complex meta-omics data remains a challenging task, especially in comparison with more straightforward bacterial and archaeal systems. Here, we use a transcriptome reconstruction method based on clustering co-abundant genes across a series of metagenomic samples. We investigated the co-abundance patterns of ∼37 million eukaryotic unigenes across 365 metagenomic samples collected during the Tara Oceans expeditions to assess the diversity and functional profiles of marine plankton. We identified ∼12,000 co-abundant gene groups (CAGs), encompassing ∼7 million unigenes, including 924 metagenomics-based transcriptomes (MGTs, CAGs larger than 500 unigenes). We demonstrated the biological validity of the MGT collection by comparing individual MGTs with available references. We identified several key eukaryotic organisms involved in dimethylsulfoniopropionate (DMSP) biosynthesis and catabolism in different oceanic provinces, thus demonstrating the potential of the MGT collection to provide functional insights on eukaryotic plankton. We established the ability of the MGT approach to capture interspecies associations through the analysis of a nitrogen-fixing haptophyte-cyanobacterial symbiotic association. This MGT collection provides a valuable resource for analyses of eukaryotic plankton in the open ocean by giving access to the genomic content and functional potential of many ecologically relevant eukaryotic species.


Assuntos
Biologia Computacional/métodos , Eucariotos/genética , Perfilação da Expressão Gênica , Metagenoma , Metagenômica , Plâncton/genética , Transcriptoma , Biodiversidade , Eucariotos/classificação , Perfilação da Expressão Gênica/métodos , Metagenômica/métodos , Filogenia , Plâncton/classificação
5.
ISME J ; 13(10): 2536-2550, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31227817

RESUMO

Unlike biologically available nitrogen and phosphorus, which are often at limiting concentrations in surface seawater, sulfur in the form of sulfate is plentiful and not considered to constrain marine microbial activity. Nonetheless, in a model system in which a marine bacterium obtains all of its carbon from co-cultured phytoplankton, bacterial gene expression suggests that at least seven dissolved organic sulfur (DOS) metabolites support bacterial heterotrophy. These labile exometabolites of marine dinoflagellates and diatoms include taurine, N-acetyltaurine, isethionate, choline-O-sulfate, cysteate, 2,3-dihydroxypropane-1-sulfonate (DHPS), and dimethylsulfoniopropionate (DMSP). Leveraging from the compounds identified in this model system, we assessed the role of sulfur metabolites in the ocean carbon cycle by mining the Tara Oceans dataset for diagnostic genes. In the 1.4 million bacterial genome equivalents surveyed, estimates of the frequency of genomes harboring the capability for DOS metabolite utilization ranged broadly, from only 1 out of every 190 genomes (for the C2 sulfonate isethionate) to 1 out of every 5 (for the sulfonium compound DMSP). Bacteria able to participate in DOS transformations are dominated by Alphaproteobacteria in the surface ocean, but by SAR324, Acidimicrobiia, and Gammaproteobacteria at mesopelagic depths, where the capability for utilization occurs in higher frequency than in surface bacteria for more than half the sulfur metabolites. The discovery of an abundant and diverse suite of marine bacteria with the genetic capacity for DOS transformation argues for an important role for sulfur metabolites in the pelagic ocean carbon cycle.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Fitoplâncton/metabolismo , Enxofre/metabolismo , Alphaproteobacteria/genética , Bactérias/genética , Bactérias/isolamento & purificação , Ciclo do Carbono , Diatomáceas/metabolismo , Processos Heterotróficos , Oceanos e Mares , Fitoplâncton/genética , Fitoplâncton/isolamento & purificação , Água do Mar/microbiologia
6.
Environ Microbiol ; 20(8): 3012-3030, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29968336

RESUMO

Understanding which compounds comprising the complex and dynamic marine dissolved organic matter (DOM) pool are important in supporting heterotrophic bacterial production remains a major challenge. We eliminated sources of labile phytoplankton products, advected terrestrial material and photodegradation products to coastal microbial communities by enclosing water samples in situ for 24 h in the dark. Bacterial genes for which expression decreased between the beginning and end of the incubation and chemical formulae that were depleted over this same time frame were used as indicators of bioavailable compounds, an approach that avoids augmenting or modifying the natural DOM pool. Transport- and metabolism-related genes whose relative expression decreased implicated osmolytes, carboxylic acids, fatty acids, sugars and organic sulfur compounds as candidate bioreactive molecules. FT-ICR MS analysis of depleted molecular formulae implicated functional groups ~ 30-40 Da in size cleaved from semi-polar components of DOM as bioreactive components. Both gene expression and FT-ICR MS analyses indicated higher lability of compounds with sulfur and nitrogen heteroatoms. Untargeted methodologies able to integrate biological and chemical perspectives can be effective strategies for characterizing the labile microbial metabolites participating in carbon flux.


Assuntos
Bactérias/metabolismo , Compostos Orgânicos/química , Água do Mar/química , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Microbiota , Nitrogênio/metabolismo , Oceanos e Mares , Fitoplâncton , Água do Mar/microbiologia , Enxofre/análise
7.
Genome Announc ; 3(2)2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25745010

RESUMO

Methyloferula stellata AR4 is an aerobic acidophilic methanotroph, which, in contrast to most known methanotrophs but similar to Methylocella spp., possesses only a soluble methane monooxygenase. However, it differs from Methylocella spp. by its inability to grow on multicarbon substrates. Here, we report the draft genome sequence of this bacterium.

8.
Environ Microbiol ; 17(3): 547-54, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25683159

RESUMO

We sequenced the genomes of 19 methylotrophic isolates from Lake Washington, which belong to nine genera within eight families of the Alphaproteobacteria, two of the families being the newly proposed families. Comparative genomic analysis with a focus on methylotrophy metabolism classifies these strains into heterotrophic and obligately or facultatively autotrophic methylotrophs. The most persistent metabolic modules enabling methylotrophy within this group are the N-methylglutamate pathway, the two types of methanol dehydrogenase (MxaFI and XoxF), the tetrahydromethanopterin pathway for formaldehyde oxidation, the serine cycle and the ethylmalonyl-CoA pathway. At the same time, a great potential for metabolic flexibility within this group is uncovered, with different combinations of these modules present. Phylogenetic analysis of key methylotrophy functions reveals that the serine cycle must have evolved independently in at least four lineages of Alphaproteobacteria and that all methylotrophy modules seem to be prone to lateral transfers as well as deletions.


Assuntos
Acil Coenzima A/metabolismo , Oxirredutases do Álcool/metabolismo , Alphaproteobacteria/metabolismo , Glutamatos/metabolismo , Lagos/microbiologia , Serina/metabolismo , Oxirredutases do Álcool/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Sequência de Bases , Formaldeído/metabolismo , Genômica , Sedimentos Geológicos/microbiologia , Metiltransferases/metabolismo , Filogenia , Análise de Sequência de DNA , Washington
9.
Appl Environ Microbiol ; 81(7): 2466-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25616801

RESUMO

Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus trichosporium OB3b plays a key role in controlling expression of MMO genes in this strain. As all known forms of methanobactin are structurally similar, it was hypothesized that methanobactin from one methanotroph may alter gene expression in another. When Methylosinus trichosporium OB3b was grown in the presence of 1 µM CuCl2, expression of mmoX, encoding a subunit of the hydroxylase component of sMMO, was very low. mmoX expression increased, however, when methanobactin from Methylocystis sp. strain SB2 (SB2-Mb) was added, as did whole-cell sMMO activity, but there was no significant change in the amount of copper associated with M. trichosporium OB3b. If M. trichosporium OB3b was grown in the absence of CuCl2, the mmoX expression level was high but decreased by several orders of magnitude if copper prebound to SB2-Mb (Cu-SB2-Mb) was added, and biomass-associated copper was increased. Exposure of Methylosinus trichosporium OB3b to SB2-Mb had no effect on expression of mbnA, encoding the polypeptide precursor of methanobactin in either the presence or absence of CuCl2. mbnA expression, however, was reduced when Cu-SB2-Mb was added in both the absence and presence of CuCl2. These data suggest that methanobactin acts as a general signaling molecule in methanotrophs and that methanobactin "piracy" may be commonplace.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Imidazóis/isolamento & purificação , Imidazóis/metabolismo , Methylocystaceae/química , Methylosinus trichosporium/efeitos dos fármacos , Methylosinus trichosporium/enzimologia , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/metabolismo , Oxigenases/metabolismo , Cobre/metabolismo , Meios de Cultura/química , Methylosinus trichosporium/genética
10.
PLoS One ; 9(7): e102458, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25058595

RESUMO

We describe five novel Methylophilaceae ecotypes from a single ecological niche in Lake Washington, USA, and compare them to three previously described ecotypes, in terms of their phenotype and genome sequence divergence. Two of the ecotypes appear to represent novel genera within the Methylophilaceae. Genome-based metabolic reconstruction highlights metabolic versatility of Methylophilaceae with respect to methylotrophy and nitrogen metabolism, different ecotypes possessing different combinations of primary substrate oxidation systems (MxaFI-type methanol dehydrogenase versus XoxF-type methanol dehydrogenase; methylamine dehydrogenase versus N-methylglutamate pathway) and different potentials for denitrification (assimilatory versus respiratory nitrate reduction). By comparing pairs of closely related genomes, we uncover that site-specific recombination is the main means of genomic evolution and strain divergence, including lateral transfers of genes from both closely- and distantly related taxa. The new ecotypes and the new genomes contribute significantly to our understanding of the extent of genomic and metabolic diversity among organisms of the same family inhabiting the same ecological niche. These organisms also provide novel experimental models for studying the complexity and the function of the microbial communities active in methylotrophy.


Assuntos
Proteínas de Bactérias/metabolismo , Genoma Bacteriano , Lagos/microbiologia , Methylophilaceae/metabolismo , Nitrogênio/metabolismo , Filogenia , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/genética , Desnitrificação/genética , Ecótipo , Variação Genética , Glutamatos/metabolismo , Methylophilaceae/classificação , Methylophilaceae/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Recombinação Genética , Washington
11.
Appl Environ Microbiol ; 80(10): 3044-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610846

RESUMO

A minority of methanotrophs are able to utilize multicarbon compounds as growth substrates in addition to methane. The pathways utilized by these microorganisms for assimilation of multicarbon compounds, however, have not been explicitly examined. Here, we report the draft genome of the facultative methanotroph Methylocystis sp. strain SB2 and perform a detailed transcriptomic analysis of cultures grown with either methane or ethanol. Evidence for use of the canonical methane oxidation pathway and the serine cycle for carbon assimilation from methane was obtained, as well as for operation of the complete tricarboxylic acid (TCA) cycle and the ethylmalonyl-coenzyme A (EMC) pathway. Experiments with Methylocystis sp. strain SB2 grown on methane revealed that genes responsible for the first step of methane oxidation, the conversion of methane to methanol, were expressed at a significantly higher level than those for downstream oxidative transformations, suggesting that this step may be rate limiting for growth of this strain with methane. Further, transcriptomic analyses of Methylocystis sp. strain SB2 grown with ethanol compared to methane revealed that on ethanol (i) expression of the pathway of methane oxidation and the serine cycle was significantly reduced, (ii) expression of the TCA cycle dramatically increased, and (iii) expression of the EMC pathway was similar. Based on these data, it appears that Methylocystis sp. strain SB2 converts ethanol to acetyl-coenzyme A, which is then funneled into the TCA cycle for energy generation or incorporated into biomass via the EMC pathway. This suggests that some methanotrophs have greater metabolic flexibility than previously thought and that operation of multiple pathways in these microorganisms is highly controlled and integrated.


Assuntos
Proteínas de Bactérias/genética , Etanol/metabolismo , Metano/metabolismo , Methylocystaceae/genética , Methylocystaceae/metabolismo , Transcriptoma , Processos Autotróficos , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Ácido Cítrico , Genômica
12.
PeerJ ; 1: e115, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23904993

RESUMO

We carried out whole transcriptome analysis of three species of Methylophilaceae, Methylotenera mobilis, Methylotenera versatilis and Methylovorus glucosotrophus, in order to determine which metabolic pathways are actively transcribed in cultures grown in laboratory on C1 substrates and how metabolism changes under semi-in situ conditions. Comparative analyses of the transcriptomes were used to probe the metabolic strategies utilized by each of the organisms in the environment. Our analysis of transcript abundance data focused on changes in expression of methylotrophy metabolic modules, as well as on identifying any functional modules with pronounced response to in situ conditions compared to a limited set of laboratory conditions, highlighting their potential role in environmental adaptation. We demonstrate that transcriptional responses to environmental conditions involved both methylotrophy and non-methylotrophy metabolic modules as well as modules responsible for functions not directly connected to central metabolism. Our results further highlight the importance of XoxF enzymes that were previously demonstrated to be highly expressed in situ and proposed to be involved in metabolism of methanol by Methylophilaceae. At the same time, it appears that different species employ different homologous Xox systems as major metabolic modules. This study also reinforces prior observations of the apparent importance of the methylcitric acid cycle in the Methylotenera species and its role in environmental adaptation. High transcription from the respective gene clusters and pronounced response to in situ conditions, along with the reverse expression pattern for the ribulose monophosphate pathway that is the major pathway for carbon assimilation in laboratory conditions suggest that a switch in central metabolism of Methylotenera takes place in response to in situ conditions. The nature of the metabolite(s) processed via this pathway still remains unknown. Of the functions not related to central metabolism, flagellum and fimbria synthesis functions appeared to be of significance for environmental adaptation, based on their high abundance and differential expression. Our data demonstrate that, besides shared strategies, the organisms employed in this study also utilize strategies unique to each species, suggesting that the genomic divergence plays a role in environmental adaptation.

13.
Appl Environ Microbiol ; 79(19): 5918-26, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23872554

RESUMO

Many methanotrophs have been shown to synthesize methanobactin, a novel biogenic copper-chelating agent or chalkophore. Methanobactin binds copper via two heterocyclic rings with associated enethiol groups. The structure of methanobactin suggests that it can bind other metals, including mercury. Here we report that methanobactin from Methylosinus trichosporium OB3b does indeed bind mercury when added as HgCl2 and, in doing so, reduced toxicity associated with Hg(II) for both Alphaproteobacteria methanotrophs, including M. trichosporium OB3b, M. trichosporium OB3b ΔmbnA (a mutant defective in methanobactin production), and Methylocystis sp. strain SB2, and a Gammaproteobacteria methanotroph, Methylomicrobium album BG8. Mercury binding by methanobactin was evident in both the presence and absence of copper, despite the fact that methanobactin had a much higher affinity for copper due to the rapid and irreversible binding of mercury by methanobactin. The formation of a gray precipitate suggested that Hg(II), after being bound by methanobactin, was reduced to Hg(0) but was not volatilized. Rather, mercury remained associated with methanobactin and was also found associated with methanotrophic biomass. It thus appears that although the mercury-methanobactin complex was cell associated, mercury was not removed from methanobactin. The amount of biomass-associated mercury in the presence of methanobactin from M. trichosporium OB3b was greatest for M. trichosporium wild-type strain OB3b and the ΔmbnA mutant and least for M. album BG8, suggesting that methanotrophs may have selective methanobactin uptake systems that may be based on TonB-dependent transporters but that such uptake systems exhibit a degree of infidelity.


Assuntos
Imidazóis/metabolismo , Cloreto de Mercúrio/metabolismo , Cloreto de Mercúrio/toxicidade , Methylosinus trichosporium/efeitos dos fármacos , Methylosinus trichosporium/metabolismo , Oligopeptídeos/metabolismo , Alphaproteobacteria/efeitos dos fármacos , Inativação Metabólica , Methylococcaceae/efeitos dos fármacos , Methylocystaceae/efeitos dos fármacos , Oxirredução
14.
Environ Microbiol ; 15(11): 3077-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23682956

RESUMO

Biological oxidation of methane to methanol by aerobic bacteria is catalysed by two different enzymes, the cytoplasmic or soluble methane monooxygenase (sMMO) and the membrane-bound or particulate methane monooxygenase (pMMO). Expression of MMOs is controlled by a 'copper-switch', i.e. sMMO is only expressed at very low copper : biomass ratios, while pMMO expression increases as this ratio increases. Methanotrophs synthesize a chalkophore, methanobactin, for the binding and import of copper. Previous work suggested that methanobactin was formed from a polypeptide precursor. Here we report that deletion of the gene suspected to encode for this precursor, mbnA, in Methylosinus trichosporium OB3b, abolishes methanobactin production. Further, gene expression assays indicate that methanobactin, together with another polypeptide of previously unknown function, MmoD, play key roles in regulating expression of MMOs. Based on these data, we propose a general model explaining how expression of the MMO operons is regulated by copper, methanobactin and MmoD. The basis of the 'copper-switch' is MmoD, and methanobactin amplifies the magnitude of the switch. Bioinformatic analysis of bacterial genomes indicates that the production of methanobactin-like compounds is not confined to methanotrophs, suggesting that its use as a metal-binding agent and/or role in gene regulation may be widespread in nature.


Assuntos
Cobre/metabolismo , Imidazóis/metabolismo , Methylosinus trichosporium/genética , Oligopeptídeos/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Transporte Biológico , Deleção de Genes , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Metano/metabolismo , Metanol/metabolismo , Methylosinus trichosporium/metabolismo , Oligopeptídeos/biossíntese , Óperon , Oxirredução , Oxigenases/biossíntese
15.
Int J Syst Evol Microbiol ; 62(Pt 1): 106-111, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21335496

RESUMO

Phylogenetic positions, and genotypic and phenotypic characteristics of three novel methylotrophic isolates, strains 301(T), 30S and SIP3-4, from sediment of Lake Washington, Seattle, USA, are described. The strains were restricted facultative methylotrophs capable of growth on single carbon compounds (methylamine and methanol) in addition to a limited range of multicarbon compounds. All strains used the N-methylglutamate pathway for methylamine oxidation. Strain SIP3-4 possessed the canonical (MxaFI) methanol dehydrogenase, but strains 301(T) and 30S did not. All three strains used the ribulose monophosphate pathway for C1 assimilation. The major fatty acids in the three strains were C(16:0) and C(16:1)ω7c. The DNA G+C contents of strains 301(T) and SIP3-4 were 42.6 and 54.6 mol%, respectively. Based on 16S rRNA gene sequence phylogeny and the relevant phenotypic characteristics, strain SIP3-4 was assigned to the previously defined species Methylovorus glucosotrophus. Strains 301(T) and 30S were closely related to each other (100% 16S rRNA gene sequence similarity) and shared 96.6% 16S rRNA gene sequence similarity with a previously described isolate, Methylotenera mobilis JLW8(T). Based on significant genomic and phenotypic divergence with the latter, strains 301(T) and 30S represent a novel species within the genus Methylotenera, for which the name Methylotenera versatilis sp. nov. is proposed; the type strain is 301(T) (=VKM B-2679(T)=JCM 17579(T)). An emended description of the genus Methylotenera is provided.


Assuntos
Carbono/metabolismo , Água Doce , Sedimentos Geológicos/microbiologia , Methylophilaceae/classificação , Methylophilaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Methylophilaceae/genética , Methylophilaceae/fisiologia , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Washington
16.
J Bacteriol ; 193(18): 4758-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21764938

RESUMO

Methylotenera species, unlike their close relatives in the genera Methylophilus, Methylobacillus, and Methylovorus, neither exhibit the activity of methanol dehydrogenase nor possess mxaFI genes encoding this enzyme, yet they are able to grow on methanol. In this work, we integrated a genome-wide proteomics approach, shotgun proteomics, and a genome-wide transcriptomics approach, shotgun transcriptome sequencing (RNA-seq), of Methylotenera mobilis JLW8 to identify genes and enzymes potentially involved in methanol oxidation, with special attention to alternative nitrogen sources, to address the question of whether nitrate could play a role as an electron acceptor in place of oxygen. Both proteomics and transcriptomics identified a limited number of genes and enzymes specifically responding to methanol. This set includes genes involved in oxidative stress response systems, a number of oxidoreductases, including XoxF-type alcohol dehydrogenases, a type II secretion system, and proteins without a predicted function. Nitrate stimulated expression of some genes in assimilatory nitrate reduction and denitrification pathways, while ammonium downregulated some of the nitrogen metabolism genes. However, none of these genes appeared to respond to methanol, which suggests that oxygen may be the main electron sink during growth on methanol. This study identifies initial targets for future focused physiological studies, including mutant analysis, which will provide further details into this novel process.


Assuntos
Elétrons , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Metanol/metabolismo , Methylophilaceae/metabolismo , Oxigênio/metabolismo , Proteoma/análise , Methylophilaceae/química , Methylophilaceae/genética , Methylophilaceae/crescimento & desenvolvimento , Nitratos/metabolismo , Oxirredução
17.
Int J Syst Evol Microbiol ; 61(Pt 10): 2456-2463, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21097638

RESUMO

Two strains of aerobic methanotrophic bacteria, AR4(T) and SOP9, were isolated from acidic (pH 3.8-4.0) Sphagnum peat bogs in Russia. Another phenotypically similar isolate, strain LAY, was obtained from an acidic (pH 4.0) forest soil in Germany. Cells of these strains were Gram-negative, non-pigmented, non-motile, thin rods that multiplied by irregular cell division and formed rosettes or amorphous cell conglomerates. Similar to Methylocella species, strains AR4(T), SOP9 and LAY possessed only a soluble form of methane monooxygenase (sMMO) and lacked intracytoplasmic membranes. Growth occurred only on methane and methanol; the latter was the preferred growth substrate. mRNA transcripts of sMMO were detectable in cells when either methane or both methane and methanol were available. Carbon was assimilated via the serine and ribulose-bisphosphate (RuBP) pathways; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strains AR4(T), SOP9 and LAY were moderately acidophilic, mesophilic organisms capable of growth between pH 3.5 and 7.2 (optimum pH 4.8-5.2) and at 4-33 °C (optimum 20-23 °C). The major cellular fatty acid was 18 : 1ω7c and the quinone was Q-10. The DNA G+C content was 55.6-57.5 mol%. The isolates belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and were most closely related to the sMMO-possessing methanotrophs of the genus Methylocella (96.4-97.0 % 16S rRNA gene sequence similarity), particulate MMO (pMMO)-possessing methanotrophs of the genus Methylocapsa (96.1-97.0 %), facultative methylotrophs of the genus Methylovirgula (96.1-96.3 %) and non-methanotrophic organotrophs of the genus Beijerinckia (96.5-97.0 %). Phenotypically, strains AR4(T), SOP9 and LAY were most similar to Methylocella species, but differed from members of this genus by cell morphology, greater tolerance of low pH, detectable activities of RuBP pathway enzymes and inability to grow on multicarbon compounds. Therefore, we propose a novel genus and species, Methyloferula stellata gen. nov., sp. nov., to accommodate strains AR4(T), SOP9 and LAY. Strain AR4(T) ( = DSM 22108(T)  = LMG 25277(T)  = VKM B-2543(T)) is the type strain of Methyloferula stellata.


Assuntos
Beijerinckiaceae/classificação , Beijerinckiaceae/isolamento & purificação , Microbiologia Ambiental , Oxigenases/metabolismo , Proteínas de Bactérias/metabolismo , Composição de Bases , Beijerinckiaceae/genética , Beijerinckiaceae/fisiologia , Carbono/metabolismo , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Perfilação da Expressão Gênica , Alemanha , Concentração de Íons de Hidrogênio , Metano/metabolismo , Metanol/metabolismo , Dados de Sequência Molecular , Fixação de Nitrogênio , Filogenia , RNA Ribossômico 16S/genética , Federação Russa , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...